Search results
Results from the WOW.Com Content Network
Mass; system unit unit-code symbol or abbrev. notes sample default conversion combinations SI: kilogram: kg kg 1.0 kg (2.2 lb) kg lb. kg lb st; kg st. kg st lb; gram: g g
A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL.
However, the names of all SI mass units are based on gram, rather than on kilogram; thus 10 3 kg is a megagram (10 6 g), not a *kilokilogram. The tonne (t) is an SI-compatible unit of mass equal to a megagram (Mg), or 10 3 kg. The unit is in common use for masses above about 10 3 kg and is often used with SI prefixes.
Liquid water has a density of approximately 1 g/cm 3 (1 g/mL). Thus 100 mL of water is equal to approximately 100 g. Thus 100 mL of water is equal to approximately 100 g. Therefore, a solution with 1 g of solute dissolved in final volume of 100 mL aqueous solution may also be considered 1% m/m (1 g solute in 99 g water).
An aqueous solution containing 2 g of glucose and 2 g of fructose per 100 g of solution contains 2/100=2% glucose on a wet basis, but 2/4=50% glucose on a dry basis.If the solution had contained 2 g of glucose and 3 g of fructose, it would still have contained 2% glucose on a wet basis, but only 2/5=40% glucose on a dry basis.
Alkalinity is expressed in units of concentration, such as meq/L (milliequivalents per liter), μeq/kg (microequivalents per kilogram), or mg/L CaCO 3 (milligrams per liter of calcium carbonate). [3] Each of these measurements corresponds to an amount of acid added as a titrant .
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]
The equivalent weights of the three acids 63.04 g, 204.23 g and 389.92 g respectively, and the masses required for the standardisation are 126.1 mg, 408.5 mg and 779.8 mg respectively. Given that the measurement uncertainty in the mass measured on a standard analytical balance is ±0.1 mg, the relative uncertainty in the mass of oxalic acid ...