enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    Avogadro's law provides a way to calculate the quantity of gas in a receptacle. Thanks to this discovery, Johann Josef Loschmidt, in 1865, was able for the first time to estimate the size of a molecule. [9] His calculation gave rise to the concept of the Loschmidt constant, a ratio between macroscopic and atomic quantities.

  3. Ampere - Wikipedia

    en.wikipedia.org/wiki/Ampere

    As of the 2019 revision of the SI, the ampere is defined by fixing the elementary charge e to be exactly 1.602 176 634 × 10 −19 C, [6] [9] which means an ampere is an electric current equivalent to 10 19 elementary charges moving every 1.602 176 634 seconds or 6.241 509 074 × 10 18 elementary charges moving in a second.

  4. Watt - Wikipedia

    en.wikipedia.org/wiki/Watt

    In terms of electromagnetism, one watt is the rate at which electrical work is performed when a current of one ampere (A) flows across an electrical potential difference of one volt (V), meaning the watt is equivalent to the volt-ampere (the latter unit, however, is used for a different quantity from the real power of an electrical circuit).

  5. Electrochemical equivalent - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_equivalent

    In chemistry, the electrochemical equivalent (Eq or Z) of a chemical element is the mass of that element (in grams) transported by a specific quantity of electricity, usually expressed in grams per coulomb of electric charge. [1] The electrochemical equivalent of an element is measured with a voltameter.

  6. Coulomb - Wikipedia

    en.wikipedia.org/wiki/Coulomb

    The coulomb was originally defined, using the latter definition of the ampere, as 1 A × 1 s. [4] The 2019 redefinition of the ampere and other SI base units fixed the numerical value of the elementary charge when expressed in coulombs and therefore fixed the value of the coulomb when expressed as a multiple of the fundamental charge.

  7. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    The best-known and simplest example of Ampère's force law, which underlaid (before 20 May 2019 [1]) the definition of the ampere, the SI unit of electric current, states that the magnetic force per unit length between two straight parallel conductors is =,

  8. Permeability (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Permeability...

    In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.

  9. André-Marie Ampère - Wikipedia

    en.wikipedia.org/wiki/André-Marie_Ampère

    The SI unit of electric current, the ampere (A), is named after him. His name is also one of the 72 names inscribed on the Eiffel Tower . The term kinematic is the English version of his cinématique , [ 3 ] which he constructed from the Greek κίνημα kinema ("movement, motion"), itself derived from κινεῖν kinein ("to move").