Search results
Results from the WOW.Com Content Network
Video of a Venturi meter used in a lab experiment Idealized flow in a Venturi tube. The Venturi effect is the reduction in fluid pressure that results when a moving fluid speeds up as it flows from one section of a pipe to a smaller section. The Venturi effect is named after its discoverer, the 18th-century Italian physicist Giovanni Battista ...
A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .
de Laval nozzles are venturi tubes that produce supersonic gas velocities as the tube and the gas are first constricted and then the tube and gas are expanded beyond the choke plane. Rocket engine nozzles discusses how to calculate the exit velocity from nozzles used in rocket engines. Hydraulic jump; High pressure jet
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
The high-pressure spray nozzle (up to 689 kPa or 100 psig) is aimed at the throat section of a venturi constriction. The ejector venturi is unique among available scrubbing systems since it can move the process gas without the aid of a fan or blower. The liquid spray coming from the nozzle creates a partial vacuum in the side duct of the scrubber.
A vacuum ejector, or simply ejector, or aspirator, is a type of vacuum pump, which produces vacuum by means of the Venturi effect.. In an ejector, a working fluid (liquid or gaseous) flows through a jet nozzle into a tube that first narrows and then expands in cross-sectional area.
A Venturi meter constricts the flow in some fashion, and pressure sensors measure the differential pressure before and within the constriction. This method is widely used to measure flow rate in the transmission of gas through pipelines, and has been used since Roman Empire times. The coefficient of discharge of
A nozzle operates according to the Venturi effect to bring the exhaust gasses to ambient pressure, while forming them into a propulsive jet; if the pressure upstream of the nozzle is high enough, the flow will reach sonic speed . The role of the nozzle in back-pressuring the engine is explained below.