enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_binomial_distribution

    The ordinary binomial distribution is a special case of the Poisson binomial distribution, when all success probabilities are the same, that is = = =. Definitions [ edit ]

  3. Relationships among probability distributions - Wikipedia

    en.wikipedia.org/wiki/Relationships_among...

    If X is a binomial (n, p) random variable and if n is large and np is small then X approximately has a Poisson(np) distribution. If X is a negative binomial random variable with r large, P near 1, and r(1 − P) = λ, then X approximately has a Poisson distribution with mean λ. Consequences of the CLT:

  4. Poisson-type random measure - Wikipedia

    en.wikipedia.org/wiki/Poisson-type_random_measure

    Poisson-type random measures are a family of three random counting measures which are closed under restriction to a subspace, i.e. closed under thinning. They are the only distributions in the canonical non-negative power series family of distributions to possess this property and include the Poisson distribution, negative binomial distribution, and binomial distribution. [1]

  5. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the product np converges to a finite limit. Therefore, the Poisson distribution with parameter λ = np can be used as an approximation to B( n , p ) of the binomial distribution if n is sufficiently large and p is sufficiently small.

  6. (a,b,0) class of distributions - Wikipedia

    en.wikipedia.org/wiki/(a,b,0)_class_of_distributions

    The (a,b,0) class of distributions is also known as the Panjer, [1] [2] the Poisson-type or the Katz family of distributions, [3] [4] and may be retrieved through the Conway–Maxwell–Poisson distribution. Only the Poisson, binomial and negative binomial distributions satisfy the full form of this

  7. Poisson limit theorem - Wikipedia

    en.wikipedia.org/wiki/Poisson_limit_theorem

    In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840). A generalization of this theorem is Le Cam's theorem

  8. Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Poisson_distribution

    In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]

  9. Compound Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Compound_Poisson_distribution

    The shift geometric distribution is discrete compound Poisson distribution since it is a trivial case of negative binomial distribution. This distribution can model batch arrivals (such as in a bulk queue [5] [9]). The discrete compound Poisson distribution is also widely used in actuarial science for modelling the distribution of the total ...