Search results
Results from the WOW.Com Content Network
cksum is a command in Unix and Unix-like operating systems that generates a checksum value for a file or stream of data. The cksum command reads each file given in its arguments, or standard input if no arguments are provided, and outputs the file's 32-bit cyclic redundancy check (CRC) checksum and byte count. [1]
This is especially true of cryptographic hash functions, which may be used to detect many data corruption errors and verify overall data integrity; if the computed checksum for the current data input matches the stored value of a previously computed checksum, there is a very high probability the data has not been accidentally altered or corrupted.
So, the simple checksum is computed by adding together all the 8-bit bytes of the message, dividing by 255 and keeping only the remainder. (In practice, the modulo operation is performed during the summation to control the size of the result.) The checksum value is transmitted with the message, increasing its length to 137 bytes, or 1096 bits.
Adler-32 is a checksum algorithm written by Mark Adler in 1995, [1] modifying Fletcher's checksum. Compared to a cyclic redundancy check of the same length, it trades reliability for speed. Adler-32 is more reliable than Fletcher-16 , and slightly less reliable than Fletcher-32 .
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
A checksum file is a small file that contains the checksums of other files. There are a few well-known checksum file formats. [1] Several utilities, such as md5deep, can use such checksum files to automatically verify an entire directory of files in one operation. The particular hash algorithm used is often indicated by the file extension of ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The final digit of a Universal Product Code, International Article Number, Global Location Number or Global Trade Item Number is a check digit computed as follows: [3] [4]. Add the digits in the odd-numbered positions from the left (first, third, fifth, etc.—not including the check digit) together and multiply by three.