Search results
Results from the WOW.Com Content Network
The converse (inverse) of a transitive relation is always transitive. For instance, knowing that "is a subset of" is transitive and "is a superset of" is its converse, one can conclude that the latter is transitive as well. The intersection of two transitive relations is always transitive. [4]
The property of two matrices commuting is not transitive: A matrix may commute with both and , and still and do not commute with each other. As an example, the identity matrix commutes with all matrices, which between them do not all commute. If the set of matrices considered is restricted to Hermitian matrices without multiple eigenvalues ...
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
The data structure is typically stored as a Boolean matrix, so if matrix[1][4] = true, then it is the case that node 1 can reach node 4 through one or more hops. The transitive closure of the adjacency relation of a directed acyclic graph (DAG) is the reachability relation of the DAG and a strict partial order.
All definitions tacitly require the homogeneous relation be transitive: for all ,,, if and then . A term's definition may require additional properties that are not listed in this table. Fig. 1 The Hasse diagram of the set of all subsets of a three-element set { x , y , z } , {\displaystyle \{x,y,z\},} ordered by inclusion .
In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...
If X has cardinality n, the action of the alternating group is (n − 2)-transitive but not (n − 1)-transitive. The action of the general linear group of a vector space V on the set V ∖ {0} of non-zero vectors is transitive, but not 2-transitive (similarly for the action of the special linear group if the dimension of v is at least 2).
Then A is an n×m matrix and Λ is a column vector with entries, and we are again interested in AΛ = 0. As we saw previously, this is equivalent to a list of n {\displaystyle n} equations. Consider the first m {\displaystyle m} rows of A {\displaystyle A} , the first m {\displaystyle m} equations; any solution of the full list of equations ...