Search results
Results from the WOW.Com Content Network
The conjecture is named after Paul Erdős and Ernst G. Straus, who formulated it in 1948, but it is connected to much more ancient mathematics; sums of unit fractions, like the one in this problem, are known as Egyptian fractions, because of their use in ancient Egyptian mathematics.
In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions , such as 5 / 6 = 1 / 2 + 1 / 3 .
The Rhind Mathematical Papyrus. An Egyptian fraction is a finite sum of distinct unit fractions, such as + +. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other.
The Erdős–Graham conjecture in combinatorial number theory on monochromatic Egyptian fraction representations of unity, proved by Ernie Croot in 2000. [12] The Erdős–Stewart conjecture on the Diophantine equation n! + 1 = p k a p k+1 b, solved by Florian Luca in 2001. [13]
This page was last edited on 14 September 2019, at 05:13 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Ancient Egyptian mathematics is the mathematics that was developed and used in Ancient Egypt c. 3000 to c. 300 BCE, from the Old Kingdom of Egypt until roughly the beginning of Hellenistic Egypt. The ancient Egyptians utilized a numeral system for counting and solving written mathematical problems, often involving multiplication and fractions .
The odd greedy algorithm cannot terminate when given a fraction with an even denominator, because these fractions do not have finite representations with odd denominators. Therefore, in this case, it produces an infinite series expansion of its input. For instance Sylvester's sequence can be viewed as generated by the odd greedy expansion of 1/2.
The topic of Egyptian fractions has also seen interest in modern number theory; for instance, the Erdős–Graham problem [9] and the Erdős–Straus conjecture [10] concern sums of unit fractions, as does the definition of Ore's harmonic numbers.