Search results
Results from the WOW.Com Content Network
A substitution law holds for real power-associative algebras with unit, which basically asserts that multiplication of polynomials works as expected. For f a real polynomial in x , and for any a in such an algebra define f ( a ) to be the element of the algebra resulting from the obvious substitution of a into f .
Finally the product p 1 e k−1 for i = 1 gives contributions to r(i + 1) = r(2) like for other values i < k, but the remaining contributions produce k times each monomial of e k, since any one of the variables may come from the factor p 1; thus = + ().
The identity substitution, which maps every variable to itself, is the neutral element of substitution composition. A substitution σ is called idempotent if σσ = σ, and hence tσσ = tσ for every term t. When x i ≠t i for all i, the substitution { x 1 ↦ t 1, …, x k ↦ t k} is idempotent if and only if none of the variables x i ...
In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.
Cosine power-reduction formula: an illustrative diagram. The red, orange and blue triangles are all similar, and the red and orange triangles are congruent. The hypotenuse A D ¯ {\displaystyle {\overline {AD}}} of the blue triangle has length 2 cos θ {\displaystyle 2\cos \theta } .
[1] The approximation can be proven several ways, and is closely related to the binomial theorem . By Bernoulli's inequality , the left-hand side of the approximation is greater than or equal to the right-hand side whenever x > − 1 {\displaystyle x>-1} and α ≥ 1 {\displaystyle \alpha \geq 1} .
Bracket series notations are notations that substitute for common power series notations (Table 1). [19] Replacing power series notations with bracket series notations transforms the power series to a bracket series. A bracket series facilitates identifying the formula parameters needed for integration.
The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element. [1] [2]