enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    While not derived as a Riemann sum, taking the average of the left and right Riemann sums is the trapezoidal rule and gives a trapezoidal sum. It is one of the simplest of a very general way of approximating integrals using weighted averages. This is followed in complexity by Simpson's rule and Newton–Cotes formulas.

  3. Trapezoidal rule - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule

    The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...

  4. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.

  5. Partition of an interval - Wikipedia

    en.wikipedia.org/wiki/Partition_of_an_interval

    A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.

  6. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The harmonic number H n can be interpreted as a Riemann sum of the integral: + = ⁡ (+). The n th harmonic number is about as large as the natural logarithm of n . The reason is that the sum is approximated by the integral ∫ 1 n 1 x d x , {\displaystyle \int _{1}^{n}{\frac {1}{x}}\,dx,} whose value is ln n .

  7. Fundamental theorem of calculus - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Roughly speaking, the two operations can be thought of as inverses of each other. The first part of the theorem, the first fundamental theorem of calculus , states that for a continuous function f , an antiderivative or indefinite integral F can be obtained as the integral of f over an interval with a variable upper bound.

  8. Darboux integral - Wikipedia

    en.wikipedia.org/wiki/Darboux_integral

    For any given partition, the upper Darboux sum is always greater than or equal to the lower Darboux sum. Furthermore, the lower Darboux sum is bounded below by the rectangle of width (b−a) and height inf(f) taken over [a, b]. Likewise, the upper sum is bounded above by the rectangle of width (b−a) and height sup(f).

  9. Poisson summation formula - Wikipedia

    en.wikipedia.org/wiki/Poisson_summation_formula

    The Poisson summation formula is also useful to bound the errors obtained when an integral is approximated by a (Riemann) sum. Consider an approximation of S ( 0 ) = ∫ − ∞ ∞ d x s ( x ) {\textstyle S(0)=\int _{-\infty }^{\infty }dx\,s(x)} as δ ∑ n = − ∞ ∞ s ( n δ ) {\textstyle \delta \sum _{n=-\infty }^{\infty }s(n\delta ...