enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lithium oxide - Wikipedia

    en.wikipedia.org/wiki/Lithium_oxide

    Burning lithium metal produces lithium oxide. Lithium oxide forms along with small amounts of lithium peroxide when lithium metal is burned in the air and combines with oxygen at temperatures above 100 °C: [3] 4Li + O 2 → 2 Li 2 O. Pure Li 2 O can be produced by the thermal decomposition of lithium peroxide, Li 2 O 2, at 450 °C [3] [2] 2 Li ...

  3. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    In terms of Lewis structures, formal charge is used in the description, comparison, and assessment of likely topological and resonance structures [7] by determining the apparent electronic charge of each atom within, based upon its electron dot structure, assuming exclusive covalency or non-polar bonding.

  4. Formal charge - Wikipedia

    en.wikipedia.org/wiki/Formal_charge

    The formal charges computed for the remaining atoms in this Lewis structure of carbon dioxide are shown below. It is important to keep in mind that formal charges are just that – formal, in the sense that this system is a formalism. The formal charge system is just a method to keep track of all of the valence electrons that each atom brings ...

  5. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    Carbon monoxide exemplifies a Lewis structure with formal charges: To obtain the oxidation states, the formal charges are summed with the bond-order value taken positively at the carbon and negatively at the oxygen. Applied to molecular ions, this algorithm considers the actual location of the formal (ionic) charge, as drawn in the Lewis structure.

  6. Lithium cobalt oxide - Wikipedia

    en.wikipedia.org/wiki/Lithium_cobalt_oxide

    Fully reduced lithium cobalt oxide can be prepared by heating a stoichiometric mixture of lithium carbonate Li 2 CO 3 and cobalt(II,III) oxide Co 3 O 4 or metallic cobalt at 600–800 °C, then annealing the product at 900 °C for many hours, all under an oxygen atmosphere. [6] [3] [7] Nanometer-sized and sub-micrometer sized LCO synthesis ...

  7. Lithium nickel manganese cobalt oxides - Wikipedia

    en.wikipedia.org/wiki/Lithium_nickel_manganese...

    Lithium nickel manganese cobalt oxides (abbreviated NMC, Li-NMC, LNMC, or NCM) are mixed metal oxides of lithium, nickel, manganese and cobalt with the general formula LiNi x Mn y Co 1-x-y O 2. These materials are commonly used in lithium-ion batteries for mobile devices and electric vehicles , acting as the positively charged cathode .

  8. Lithium nickel cobalt aluminium oxides - Wikipedia

    en.wikipedia.org/wiki/Lithium_nickel_cobalt...

    The usable charge storage capacity of NCA is about 180 to 200 mAh/g. [1] This is well below the theoretical values; for LiNi 0.8 Co 0.15 Al 0.05 O 2 this is 279 mAh/g. [2] However, the capacity of NCA is significantly higher than that of alternative materials such as lithium cobalt oxide LiCoO 2 with 148 mAh/g, lithium iron phosphate LiFePO 4 with 165 mAh/g and NMC 333 LiNi 0.33 Mn 0.33 Co 0. ...

  9. Lithium superoxide - Wikipedia

    en.wikipedia.org/wiki/Lithium_superoxide

    At higher (but still cryogenic) temperatures, lithium superoxide can be produced by ozonating lithium peroxide (Li 2 O 2) in freon 12: Li 2 O 2 (f 12) + 2 O 3 (g) → 2 LiO 2 (f 12) + 2 O 2 (g) The resulting product is only stable up to −35 °C. [5] Alternatively, lithium electride dissolved in anhydrous ammonia will reduce oxygen gas to ...