Search results
Results from the WOW.Com Content Network
Differentiability of functions is a requirement because if a function is not differentiable, then the derivative of the function is not guaranteed to exist at each point in . The fact that I {\displaystyle {\mathcal {I}}} is an open interval is grandfathered in from the hypothesis of the Cauchy's mean value theorem .
This notion of continuity is the same as topological continuity when the partially ordered sets are given the Scott topology. [ 19 ] [ 20 ] In category theory , a functor F : C → D {\displaystyle F:{\mathcal {C}}\to {\mathcal {D}}} between two categories is called continuous if it commutes with small limits .
In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of R n and f: U → R m is Lipschitz continuous, then f is differentiable almost everywhere in U; that is, the points in U at which f is not differentiable form a set of Lebesgue measure zero.
In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain. [ 1 ] A function of class C k {\displaystyle C^{k}} is a function of smoothness at least k ; that is, a function of class C k {\displaystyle C^{k}} is a function that has a k th ...
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
In the theory of differential equations, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which guarantees the existence and uniqueness of the solution to an initial value problem. A special type of Lipschitz continuity, called contraction, is used in the Banach fixed-point theorem. [2]
A continuity equation is the mathematical way to express this kind of statement. For example, the continuity equation for electric charge states that the amount of electric charge in any volume of space can only change by the amount of electric current flowing into or out of that volume through its boundaries.