Search results
Results from the WOW.Com Content Network
This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms"
Machin-like formulas for π can be constructed by finding a set of integers , =, where all the prime factorisations of + , taken together, use a number of distinct primes , and then using either linear algebra or the LLL basis-reduction algorithm to construct linear combinations of arctangents of . For example, in the Størmer formula ...
The search procedure consists of choosing a range of parameter values for s, b, and m, evaluating the sums out to many digits, and then using an integer relation-finding algorithm (typically Helaman Ferguson's PSLQ algorithm) to find a sequence A that adds up those intermediate sums to a well-known constant or perhaps to zero.
Liu Hui's method of calculating the area of a circle. Liu Hui's π algorithm was invented by Liu Hui (fl. 3rd century), a mathematician of the state of Cao Wei.Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 (from the proportion of the celestial circle to the diameter ...
The π-calculus belongs to the family of process calculi, mathematical formalisms for describing and analyzing properties of concurrent computation.In fact, the π-calculus, like the λ-calculus, is so minimal that it does not contain primitives such as numbers, booleans, data structures, variables, functions, or even the usual control flow statements (such as if-then-else, while).
Spigot algorithms can be contrasted with algorithms that store and process complete numbers to produce successively more accurate approximations to the desired transcendental. Interest in spigot algorithms was spurred in the early days of computational mathematics by extreme constraints on memory, and such an algorithm for calculating the ...
Research on process calculi began in earnest with Robin Milner's seminal work on the Calculus of Communicating Systems (CCS) during the period from 1973 to 1980. C.A.R. Hoare's Communicating Sequential Processes (CSP) first appeared in 1978, and was subsequently developed into a full-fledged process calculus during the early 1980s. There was ...
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.