enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. High harmonic generation - Wikipedia

    en.wikipedia.org/wiki/High_Harmonic_Generation

    High harmonic generation strongly depends on the driving laser field and as a result the harmonics have similar temporal and spatial coherence properties. [10] High harmonics are often generated with pulse durations shorter than that of the driving laser. [11] This is due to the nonlinearity of the generation process, phase matching and ...

  3. Frequency-resolved optical gating - Wikipedia

    en.wikipedia.org/wiki/Frequency-resolved_optical...

    There are 128×128 total points in the trace. Using these points, an electric field is retrieved that has 2×128 points (128 for magnitude and another 128 for the phase). This is a massively overdetermined system, [1] meaning that the number of equations is much larger than the number of unknowns. Thus the importance of each individual data ...

  4. Nonlinear optics - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_optics

    The first nonlinear optical effect to be predicted was two-photon absorption, by Maria Goeppert Mayer for her PhD in 1931, but it remained an unexplored theoretical curiosity until 1961 and the almost simultaneous observation of two-photon absorption at Bell Labs [4] and the discovery of second-harmonic generation by Peter Franken et al. at University of Michigan, both shortly after the ...

  5. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    Diagram illustrating the relationship between the wavenumber and the other properties of harmonic waves. In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber).

  6. Attosecond physics - Wikipedia

    en.wikipedia.org/wiki/Attosecond_physics

    High harmonic generation in krypton.This technology is one of the most used techniques to generate attosecond bursts of light. Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond (10 −18 s) photon pulses are used to unravel dynamical processes in matter with ...

  7. Ultrafast laser spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Ultrafast_laser_spectroscopy

    High harmonic generation in atoms is well understood in terms of the three-step model (ionization, propagation, and recombination). Ionization: The intense laser field modifies the Coulomb potential of the atom, electron tunnels through the barrier and ionize. Propagation: The free-electron accelerates in the laser field and gains momentum.

  8. Harmonic generation - Wikipedia

    en.wikipedia.org/wiki/Harmonic_generation

    N-th harmonic generation. Harmonic generation (HG, also called multiple harmonic generation) is a nonlinear optical process in which photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with times the energy of the initial photons (equivalently, times the frequency and the wavelength divided by ).

  9. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.