Search results
Results from the WOW.Com Content Network
Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
The law is, in a strict sense, only about correspondence; it does not state that communication structure is the cause of system structure, merely describes the connection. Different commentators have taken various positions on the direction of causality; that technical design causes the organization to restructure to fit, [ 10 ] that the ...
the logarithmic cost model, also called logarithmic-cost measurement (and similar variations), assigns a cost to every machine operation proportional to the number of bits involved The latter is more cumbersome to use, so it is only employed when necessary, for example in the analysis of arbitrary-precision arithmetic algorithms, like those ...
The master theorem for divide-and-conquer recurrences tells us that T(n) = O(n log n). The outline of a formal proof of the O(n log n) expected time complexity follows. Assume that there are no duplicates as duplicates could be handled with linear time pre- and post-processing, or considered cases easier than the analyzed.
The closed form follows from the master theorem for divide-and-conquer recurrences. The number of comparisons made by merge sort in the worst case is given by the sorting numbers. These numbers are equal to or slightly smaller than (n ⌈lg n⌉ − 2 ⌈lg n⌉ + 1), which is between (n lg n − n + 1) and (n lg n + n + O(lg n)). [6]
Divide-and-conquer algorithms are naturally adapted for execution in multi-processor machines, especially shared-memory systems where the communication of data between processors does not need to be planned in advance because distinct sub-problems can be executed on different processors.