enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular vibration - Wikipedia

    en.wikipedia.org/wiki/Molecular_vibration

    A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.

  3. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

  4. Vibration - Wikipedia

    en.wikipedia.org/wiki/Vibration

    Vibration (from Latin vibrāre 'to shake') is a mechanical phenomenon whereby oscillations occur about an equilibrium point.Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the oscillations can only be analysed statistically (e.g. the movement of a tire on a gravel road).

  5. Vibrational energy relaxation - Wikipedia

    en.wikipedia.org/wiki/Vibrational_energy_relaxation

    Vibrational energy relaxation, or vibrational population relaxation, is a process in which the population distribution of molecules in quantum states of high energy level caused by an external perturbation returns to the Maxwell–Boltzmann distribution. In solution, the process proceeds with intra- and intermolecular energy transfer. The ...

  6. Morse potential - Wikipedia

    en.wikipedia.org/wiki/Morse_potential

    The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.

  7. Rotational–vibrational spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Rotational–vibrational...

    The energy change of rotation can be either subtracted from or added to the energy change of vibration, giving the P- and R- branches of the spectrum, respectively. The calculation of the transition wavenumbers is more complicated than for pure rotation because the rotational constant B ν is different in the ground and excited vibrational states.

  8. Molecular Hamiltonian - Wikipedia

    en.wikipedia.org/wiki/Molecular_Hamiltonian

    The fourth term in the Watson Hamiltonian is the kinetic energy associated with the vibrations of the atoms (nuclei) expressed in normal coordinates q s, which as stated above, are given in terms of nuclear displacements ρ iα by = = =, =, …,

  9. Franck–Condon principle - Wikipedia

    en.wikipedia.org/wiki/Franck–Condon_principle

    Equal spacing between vibrational levels is only the case for the parabolic potential of simple harmonic oscillators, in more realistic potentials, such as those shown in Figure 1, energy spacing decreases with increasing vibrational energy. Electronic transitions to and from the lowest vibrational states are often referred to as 0–0 (zero ...