Search results
Results from the WOW.Com Content Network
Information from a source is gained by a recipient only if the recipient did not already have that information to begin with. Messages that convey information over a certain (P=1) event (or one which is known with certainty, for instance, through a back-channel) provide no information, as the above equation indicates. Infrequently occurring ...
In the view of Jaynes (1957), [19] thermodynamic entropy, as explained by statistical mechanics, should be seen as an application of Shannon's information theory: the thermodynamic entropy is interpreted as being proportional to the amount of further Shannon information needed to define the detailed microscopic state of the system, that remains ...
The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it. [1]
In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]
Mutual information measures the amount of information that can be obtained about one random variable by observing another. It is important in communication where it can be used to maximize the amount of information shared between sent and received signals. The mutual information of X relative to Y is given by:
The expected value of the information gain is the mutual information (;) of and – i.e. the reduction in the entropy of achieved by learning the state of the random variable . In machine learning, this concept can be used to define a preferred sequence of attributes to investigate to most rapidly narrow down the state of X .
A variable of this type is called a dummy variable. If the dependent variable is a dummy variable, then logistic regression or probit regression is commonly employed. In the case of regression analysis, a dummy variable can be used to represent subgroups of the sample in a study (e.g. the value 0 corresponding to a constituent of the control ...
The Fisher information is a way of measuring the amount of information that an observable random variable carries about an unknown parameter upon which the probability of depends. Let f ( X ; θ ) {\displaystyle f(X;\theta )} be the probability density function (or probability mass function ) for X {\displaystyle X} conditioned on the value of ...