Search results
Results from the WOW.Com Content Network
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
The other two sides are called the legs (or the lateral sides) if they are not parallel; otherwise, the trapezoid is a parallelogram, and there are two pairs of bases. A scalene trapezoid is a trapezoid with no sides of equal measure, [ 3 ] in contrast with the special cases below.
Trapezium (UK) or trapezoid (US): at least one pair of opposite sides are parallel. Trapezia (UK) and trapezoids (US) include parallelograms. Isosceles trapezium (UK) or isosceles trapezoid (US): one pair of opposite sides are parallel and the base angles are equal in measure. Alternative definitions are a quadrilateral with an axis of symmetry ...
Two pairs of opposite sides are parallel (by definition). Two pairs of opposite sides are equal in length. Two pairs of opposite angles are equal in measure. The diagonals bisect each other. One pair of opposite sides is parallel and equal in length. Adjacent angles are supplementary. Each diagonal divides the quadrilateral into two congruent ...
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
A parallelogram is a special case of a trapezium (known as a trapezoid in North America) in which both pairs of opposite sides are parallel and equal in length. A trapezium is a convex quadrilateral which has at least one pair of parallel opposite sides. A convex quadrilateral is Simple: The boundary does not cross itself.
From the figure, one can easily see that the triangles and are congruent. Since and are both perpendicular to , they are parallel and so the quadrilateral is a trapezoid. The theorem is proved by computing the area of this trapezoid in two different ways.
making it automatically a trapezoid. Two opposite sides (bases) are parallel, the two other sides (legs) are of equal length. but when I consider editing it it says: An isosceles trapezoid (isosceles trapezium in British English) is a quadrilateral with a line of symmetry bisecting one pair of opposite sides, making it automatically a trapezoid ...