Search results
Results from the WOW.Com Content Network
41 is: the 13th smallest prime number. The next is 43, making both twin primes. the sum of the first six prime numbers (2 + 3 + 5 + 7 + 11 + 13). the 12th supersingular prime [1] a Newman–Shanks–Williams prime. [2] the smallest Sophie Germain prime to start a Cunningham chain of the first kind of three terms, {41, 83, 167}.
A cluster prime is a prime p such that every even natural number k ≤ p − 3 is the difference of two primes not exceeding p. 3, 5, 7, 11, 13, 17, 19, 23, ... (OEIS: A038134) All odd primes between 3 and 89, inclusive, are cluster primes. The first 10 primes that are not cluster primes are: 2, 97, 127, 149, 191, 211, 223, 227, 229, 251.
One way to classify composite numbers is by counting the number of prime factors. A composite number with two prime factors is a semiprime or 2-almost prime (the factors need not be distinct, hence squares of primes are included). A composite number with three distinct prime factors is a sphenic number. In some applications, it is necessary to ...
Prime ideals, which generalize prime elements in the sense that the principal ideal generated by a prime element is a prime ideal, are an important tool and object of study in commutative algebra, algebraic number theory and algebraic geometry. The prime ideals of the ring of integers are the ideals (0), (2), (3), (5), (7), (11), ...
New prime is 16 million digits larger than previous one
Record-breaking prime number containing more than 41 million digits found by former Nvidia programmer. Julianna Bragg, CNN. November 1, 2024 at 11:35 AM.
The differences between the terms are 2, 4, 6, 8, 10... For n = 40, it produces a square number, 1681, which is equal to 41 × 41, the smallest composite number for this formula for n ≥ 0. If 41 divides n, it divides P(n) too. Furthermore, since P(n) can be written as n(n + 1) + 41, if 41 divides n + 1 instead, it also divides P(n).
The table is complete up to the maximum norm at the end of the table in the sense that each composite or prime in the first quadrant appears in the second column. Gaussian primes occur only for a subset of norms, detailed in sequence OEIS: A055025. This here is a composition of sequences OEIS: A103431 and OEIS: A103432.