enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.

  3. Multiplicity (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(statistical...

    The goal is to determine the multiplicity as a function of U; from there, the entropy and other thermodynamic properties of the system can be determined. However, it is useful as an intermediate step to calculate multiplicity as a function of N ↑ {\displaystyle N_{\uparrow }} and N ↓ . {\displaystyle N_{\downarrow }.}

  4. Multiplicity function for N noninteracting spins - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_function_for...

    The multiplicity function for a two state paramagnet, W(n,N), is the number of spin states such that n of the N spins point in the z-direction. This function is given by the combinatoric function C(N,n). That is:

  5. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which at least one of f and 1/f is holomorphic.

  6. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    This extended multiplicity function is commonly called simply the multiplicity function, and suffices for defining multisets when the universe containing the elements has been fixed. This multiplicity function is a generalization of the indicator function of a subset , and shares some properties with it.

  7. Minimal polynomial (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(linear...

    The multiplicity of a root λ of μ A is the largest power m such that ker((A − λI n) m) strictly contains ker((A − λI n) m−1). In other words, increasing the exponent up to m will give ever larger kernels, but further increasing the exponent beyond m will just give the same kernel.

  8. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    The intersection number arises in the study of fixed points, which can be cleverly defined as intersections of function graphs with a diagonals. Calculating the intersection numbers at the fixed points counts the fixed points with multiplicity, and leads to the Lefschetz fixed-point theorem in quantitative form.

  9. Multiplicity function - Wikipedia

    en.wikipedia.org/?title=Multiplicity_function&...

    This page was last edited on 4 November 2007, at 17:33 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.