Search results
Results from the WOW.Com Content Network
1-Chloro-2-butene, 1-chlorobut-2-ene, 2-butenyl chloride, gamma-methylallyl chloride ... 90.55 g·mol −1 Appearance Liquid Density: 0.949 g/cm 3: Melting point: − ...
For example, the industrial production of chloroethane proceeds by the reaction of ethylene with HCl: H 2 C=CH 2 + HCl → CH 3 CH 2 Cl. In oxychlorination, hydrogen chloride instead of the more expensive chlorine is used for the same purpose: CH 2 =CH 2 + 2 HCl + 1 ⁄ 2 O 2 → ClCH 2 CH 2 Cl + H 2 O.
The first step is the liquid- or vapour-phase chlorination of butadiene to a mixture of 3,4-dichlorobut-1-ene and 1,4-dichlorobut-2-ene (both isomers). In the second step, the mixture of 1,4-dichlorobut-2-ene and 3,4-dichlorobut-1-ene is isomerized to 3,4-dichlorobut-1-ene by heating to temperatures of 60–120 °C in the presence of a catalyst.
When 1 mole of HCl adds to 1 mole of 1,3-butadiene, in addition to the ordinarily expected product 3-chloro-1-butene, we also find 1-chloro-2-butene. Isotope labelling experiments have shown that what happens here is that the additional double bond shifts from 1,2 position to 2,3 position in some of the product.
In the similar substitution of 1-chloro-3-methyl-2-butene, the secondary 2-methyl-3-buten-2-ol is produced in a yield of 85%, while that for the primary 3-methyl-2-buten-1-ol is 15%. Allylic shifts occur because the transition state is an allyl intermediate. In other respects they are similar to classical nucleophilic substitution, and admit ...
Chloroprene (IUPAC name 2-chlorobuta-1,3-diene) is a chemical compound with the molecular formula CH 2 =CCl−CH=CH 2. [3] Chloroprene is a colorless volatile liquid, almost exclusively used as a monomer for the production of the polymer polychloroprene, better known as neoprene , a type of synthetic rubber .
1-Chlorobutane is an alkyl halide with the chemical formula CH 3 (CH 2) 3 Cl. It is a colorless, flammable liquid. It is a colorless, flammable liquid. Preparation and reactions
For example, the relative rates of epoxidation increase upon methyl substitution of the alkene (the methyl groups increase the electron density of the double bond by hyperconjugation): ethylene (1, no methyl groups), propene (24, one methyl group), cis-2-butene (500, two methyl groups), 2-methyl-2-butene (6500, three methyl groups), 2,3 ...