Search results
Results from the WOW.Com Content Network
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
Z function in the complex plane, zoomed out. In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function.
4. Written as a function of another function, it is used for comparing the asymptotic growth of two functions. See Big O notation § Related asymptotic notations. 5. In number theory, may denote the prime omega function. That is, () is the number of distinct prime factors of the integer n.
The general form of wavefunction for a system of particles, each with position r i and z-component of spin s z i. Sums are over the discrete variable s z , integrals over continuous positions r . For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is ...
In this notation, x is the argument or variable of the function. A specific element x of X is a value of the variable, and the corresponding element of Y is the value of the function at x, or the image of x under the function. A function f, its domain X, and its codomain Y are often specified by the notation :.
An example of a formal specification (in Spanish) using the Z notation, with named schema boxes, including declarations and predicates. The Z notation / ˈ z ɛ d / is a formal specification language used for describing and modelling computing systems. [1] It is targeted at the clear specification of computer programs and computer-based systems ...
In signal processing, this definition can be used to evaluate the Z-transform of the unit impulse response of a discrete-time causal system.. An important example of the unilateral Z-transform is the probability-generating function, where the component [] is the probability that a discrete random variable takes the value.