Search results
Results from the WOW.Com Content Network
The vast majority of research on pain in crustaceans has used (semi-) aquatic, decapoda species. Animals living in largely different environments are unlikely to have developed the same nociceptive or pain-detecting neural mechanisms.
The concept of nociception does not necessarily imply any adverse, subjective feeling; it is a reflex action. The second component is the experience of "pain" itself, or suffering—i.e., the internal, emotional interpretation of the nociceptive experience. Pain is therefore a private, emotional experience.
In mollusks, nociceptive responses are mediated by pedal sensory neurons. [23] [24] Crustaceans, on the other hand, utilize a variety of sensory cell types, including chordotonal organs and mechanoreceptors, to detect potentially damaging stimuli (see also Pain in crustaceans).
Nociceptive pain consists of an adaptive alarm system. [6] Nociceptors have a certain threshold; that is, they require a minimum intensity of stimulation before they trigger a signal. Once this threshold is reached, a signal is passed along the axon of the neuron into the spinal cord.
A nociception assay (nocioception or nocioperception assay) evaluates the ability of an animal, usually a rodent, to detect a noxious stimulus such as the feeling of pain, caused by stimulation of nociceptors. These assays measure the existence of pain through behaviors such as withdrawal, licking, immobility, and vocalization.
The gate control theory of pain asserts that non-painful input closes the nerve "gates" to painful input, which prevents pain sensation from traveling to the central nervous system. In the top panel, the nonnociceptive, large-diameter sensory fiber (orange) is more active than the nociceptive small-diameter fiber (blue), therefore the net input ...
Noxious stimulation induces peripheral afferents responsible for transducing pain (including A-delta and C-nerve fibers, as well as free nerve endings) throughout the nervous system of an organism. The ability to perceive noxious stimuli is a prerequisite for nociception , which itself is a prerequisite for nociceptive pain . [ 1 ]
Noxious stimuli activate the endings of nociceptive C and A delta nerve fibers, which carry the signal to neurons in the dorsal horn of spinal cord. DNIC refers to the mechanism by which dorsal horn wide dynamic range neurons responsive to stimulation from one location of the body may be inhibited by noxious stimuli (such as heat, high pressure or electric stimulation) applied to another ...