Search results
Results from the WOW.Com Content Network
In mathematics, an equidistant set (also called a midset, or a bisector) is a set whose elements have the same distance (measured using some appropriate distance function) from two or more sets. The equidistant set of two singleton sets in the Euclidean plane is the perpendicular bisector of the segment joining the two sets. The conic sections ...
In two-dimensional Euclidean geometry, the locus of points equidistant from two given (different) points is their perpendicular bisector. In three dimensions, the locus of points equidistant from two given points is a plane, and generalising further, in n-dimensional space the locus of points equidistant from two points in n-space is an (n−1 ...
Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.
To bisect an angle with straightedge and compass, one draws a circle whose center is the vertex. The circle meets the angle at two points: one on each leg. Using each of these points as a center, draw two circles of the same size. The intersection of the circles (two points) determines a line that is the angle bisector.
The distance travelled by an object is the length of a specific path travelled between two points, [6] such as the distance walked while navigating a maze. This can even be a closed distance along a closed curve which starts and ends at the same point, such as a ball thrown straight up, or the Earth when it completes one orbit .
The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes. There are two canonical proofs that are always used to show non-mathematicians what a mathematical proof is like:
Step 1 (red): construct a circle with center at P to create points A' and B' on the line AB, which are equidistant from P. Step 2 (green): construct circles centered at A' and B' having equal radius. Let Q and P be the points of intersection of these two circles. Step 3 (blue): connect Q and P to construct the desired perpendicular PQ.
In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis). Given a straight line L and a point P not on L , one can construct a hypercycle by taking all points Q on the same side of L as P , with perpendicular distance to L equal to that ...