enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    The difference of two squares can also be used as an arithmetical short cut. If two numbers (whose average is a number which is easily squared) are multiplied, the difference of two squares can be used to give you the product of the original two numbers. For example: = (+)

  3. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: N = a 2 − b 2 . {\displaystyle N=a^{2}-b^{2}.} That difference is algebraically factorable as ( a + b ) ( a − b ) {\displaystyle (a+b)(a-b)} ; if neither factor equals one, it is a proper ...

  4. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.

  5. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    More generally, the difference of the squares of two numbers is the product of their sum and their difference. That is, = (+) This is the difference-of-squares formula, which can be useful for mental arithmetic: for example, 47 × 53 can be easily computed as 50 2 − 3 2 = 2500 − 9 = 2491.

  6. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) ... Visual proof of the differences between two squares and two cubes.

  7. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    Congruences of squares are extremely useful in integer factorization algorithms. Conversely, because finding square roots modulo a composite number turns out to be probabilistic polynomial-time equivalent to factoring that number, any integer factorization algorithm can be used efficiently to identify a congruence of squares.

  8. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2. The prime decomposition of the number 3430 is 2 · 5 · 7 3. This time, the exponent of 7 in the decomposition is 3, an odd number. So 3430 cannot be written as the sum of two squares.

  9. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    The sum of one odd square and one even square is congruent to 1 mod 4, but there exist composite numbers such as 21 that are 1 mod 4 and yet cannot be represented as sums of two squares. Fermat's theorem on sums of two squares states that the prime numbers that can be represented as sums of two squares are exactly 2 and the odd primes congruent ...