enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.

  3. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

  4. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, [1] allows for multiple instances for each of its elements.The number of instances given for each element is called the multiplicity of that element in the multiset.

  5. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    This shows that the eigenvalues are 1, 2, 4 and 4, according to algebraic multiplicity. The eigenspace corresponding to the eigenvalue 1 can be found by solving the equation Av = λv. It is spanned by the column vector v = (−1, 1, 0, 0) T. Similarly, the eigenspace corresponding to the eigenvalue 2 is spanned by w = (1, −1, 0, 1) T.

  6. Scheme (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scheme_(mathematics)

    In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).

  7. Multiplicity theory - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_theory

    The notion of the multiplicity of a module is a generalization of the degree of a projective variety. By Serre's intersection formula, it is linked to an intersection multiplicity in the intersection theory. The main focus of the theory is to detect and measure a singular point of an algebraic variety (cf. resolution of singularities).

  8. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    may mean that A is a subset of B, and is possibly equal to B; that is, every element of A belongs to B; expressed as a formula, ,. 2. A ⊂ B {\displaystyle A\subset B} may mean that A is a proper subset of B , that is the two sets are different, and every element of A belongs to B ; expressed as a formula, A ≠ B ∧ ∀ x , x ∈ A ⇒ x ∈ ...

  9. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    This case can also always be reduced to a biquadratic equation. Single Multiplicity-2 (SM2): when the general quartic equation can be expressed as () () =, where , , and are three different real numbers or is a real number and and are a couple of non-real complex conjugate numbers. This case is divided into two subcases, those that can be ...