enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RNA-Seq - Wikipedia

    en.wikipedia.org/wiki/RNA-Seq

    Gene length: Longer genes will have more fragments/reads/counts than shorter genes if transcript expression is the same. This is adjusted by dividing the FPM by the length of a feature (which can be a gene, transcript, or exon), resulting in the metric fragments per kilobase of feature per million mapped reads (FPKM). [90]

  3. Read (biology) - Wikipedia

    en.wikipedia.org/wiki/Read_(biology)

    Sequencing technologies vary in the length of reads produced. Reads of length 20-40 base pairs (bp) are referred to as ultra-short. [2] Typical sequencers produce read lengths in the range of 100-500 bp. [3] However, Pacific Biosciences platforms produce read lengths of approximately 1500 bp. [4] Read length is a factor which can affect the results of biological studies. [5]

  4. Molecular-weight size marker - Wikipedia

    en.wikipedia.org/wiki/Molecular-weight_size_marker

    There are two common methods in which to construct a DNA molecular-weight size marker. [3] One such method employs the technique of partial ligation. [3] DNA ligation is the process by which linear DNA pieces are connected to each other via covalent bonds; more specifically, these bonds are phosphodiester bonds. [4]

  5. DNA sequencing - Wikipedia

    en.wikipedia.org/wiki/DNA_sequencing

    In 2012, with cameras operating at more than 10 MHz A/D conversion rates and available optics, fluidics and enzymatics, throughput can be multiples of 1 million nucleotides/second, corresponding roughly to 1 human genome equivalent at 1x coverage per hour per instrument, and 1 human genome re-sequenced (at approx. 30x) per day per instrument ...

  6. Sequence assembly - Wikipedia

    en.wikipedia.org/wiki/Sequence_assembly

    In bioinformatics, sequence assembly refers to aligning and merging fragments from a longer DNA sequence in order to reconstruct the original sequence. [1] This is needed as DNA sequencing technology might not be able to 'read' whole genomes in one go, but rather reads small pieces of between 20 and 30,000 bases, depending on the technology used. [1]

  7. Bacterial genome - Wikipedia

    en.wikipedia.org/wiki/Bacterial_genome

    In B. subtilis the length of the transferred DNA is more than 1 million bases, is likely double stranded DNA, and is often more than a third of the total chromosome length of 4215 kb. [24] Approximately 7-9% of the recipient cells take up an entire chromosome. [25]

  8. Fluorescence in situ hybridization - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_situ...

    (In the eventual analysis, these fragments were put into order by digesting a copy of each fragment into still smaller fragments using sequence-specific endonucleases, measuring the size of each small fragment using size-exclusion chromatography, and using that information to determine where the large fragments overlapped one another.) To ...

  9. Gene density - Wikipedia

    en.wikipedia.org/wiki/Gene_density

    In genetics, the gene density of an organism's genome is the ratio of the number of genes per number of base pairs, usually written in terms of a million base pairs, or megabase (Mb). The human genome has a gene density of 11-15 genes/Mb, while the genome of the C. elegans roundworm is estimated to have 200. [1]