Search results
Results from the WOW.Com Content Network
In the top figure the fraction 1/9000 in Excel is displayed. Although this number has a decimal representation that is an infinite string of ones, Excel displays only the leading 15 figures. In the second line, the number one is added to the fraction, and again Excel displays only 15 figures. In the third line, one is subtracted from the sum ...
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
For example, if the summands x i are uncorrelated random numbers with zero mean, the sum is a random walk and the condition number will grow proportional to . On the other hand, for random inputs with nonzero mean the condition number asymptotes to a finite constant as n → ∞ {\displaystyle n\to \infty } .
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula c q ( n ) = ∑ 1 ≤ a ≤ q ( a , q ) = 1 e 2 π i a q n , {\displaystyle c_{q}(n)=\sum _{1\leq a\leq q \atop (a,q)=1}e^{2\pi i{\tfrac {a}{q}}n},}
The digit sum - add the digits of the representation of a number in a given base. For example, considering 84001 in base 10 the digit sum would be 8 + 4 + 0 + 0 + 1 = 13. The digital root - repeatedly apply the digit sum operation to the representation of a number in a given base until the outcome is a single digit. For example, considering ...
Sum (category theory), the generic concept of summation in mathematics; Sum, the result of summation, the addition of a sequence of numbers; 3SUM, a term from computational complexity theory; Band sum, a way of connecting mathematical knots; Connected sum, a way of gluing manifolds; Digit sum, in number theory; Direct sum, a combination of ...