enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Circular convolution - Wikipedia

    en.wikipedia.org/wiki/Circular_convolution

    Then many of the values of the circular convolution are identical to values of x∗h, which is actually the desired result when the h sequence is a finite impulse response (FIR) filter. Furthermore, the circular convolution is very efficient to compute, using a fast Fourier transform (FFT) algorithm and the circular convolution theorem.

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    The most common fast convolution algorithms use fast Fourier transform (FFT) algorithms via the circular convolution theorem. Specifically, the circular convolution of two finite-length sequences is found by taking an FFT of each sequence, multiplying pointwise, and then performing an inverse FFT. Convolutions of the type defined above are then ...

  4. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    The premise behind the circular convolution approach on multidimensional signals is to develop a relation between the Convolution theorem and the Discrete Fourier transform (DFT) that can be used to calculate the convolution between two finite-extent, discrete-valued signals.

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    which gives rise to the interpretation as a circular convolution of and . [7] [8] It is often used to efficiently compute their linear convolution. (see Circular convolution, Fast convolution algorithms, and Overlap-save) Similarly, the cross-correlation of and is given by:

  6. Circulant matrix - Wikipedia

    en.wikipedia.org/wiki/Circulant_matrix

    Using the circular convolution theorem, we can use the discrete Fourier transform to transform the cyclic convolution into component-wise multiplication = () = so that = [((()) (()))]. This algorithm is much faster than the standard Gaussian elimination , especially if a fast Fourier transform is used.

  7. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  8. Overlap–save method - Wikipedia

    en.wikipedia.org/wiki/Overlap–save_method

    The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem: [] = ...

  9. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    And for any parameter +, [A] it is equivalent to the -point circular convolution of [] with [] in the region [,]. The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem :