enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Michael Spivak - Wikipedia

    en.wikipedia.org/wiki/Michael_Spivak

    His five-volume A Comprehensive Introduction to Differential Geometry [11] is among his most influential and celebrated works. The distinctive pedagogical aim of the work, as stated in its preface, was to elucidate for graduate students the often obscure relationship between classical differential geometry—geometrically intuitive but imprecise—and its modern counterpart, replete with ...

  3. Foundations of Differential Geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of...

    Foundations of Differential Geometry is an influential 2-volume mathematics book on differential geometry written by Shoshichi Kobayashi and Katsumi Nomizu. The first volume was published in 1963 and the second in 1969, by Interscience Publishers. Both were published again in 1996 as Wiley Classics Library.

  4. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.

  5. Barrett O'Neill - Wikipedia

    en.wikipedia.org/wiki/Barrett_O'Neill

    He is known for contributions to differential geometry, including two widely-used textbooks on its foundational theory. [2] He was the author of eighteen research articles, the last of which was published in 1973. He received his Ph.D. in mathematics in 1951 from the Massachusetts Institute of Technology. His doctoral advisor was Witold Hurewicz.

  6. Manfredo do Carmo - Wikipedia

    en.wikipedia.org/wiki/Manfredo_do_Carmo

    Do Carmo's main research interests were Riemannian geometry and the differential geometry of surfaces. [3]In particular, he worked on rigidity and convexity of isometric immersions, [26] [27] stability of hypersurfaces [28] [29] and of minimal surfaces, [30] [31] topology of manifolds, [32] isoperimetric problems, [33] minimal submanifolds of a sphere, [34] [35] and manifolds of constant mean ...

  7. List of differential geometry topics - Wikipedia

    en.wikipedia.org/wiki/List_of_differential...

    See also multivariable calculus, list of multivariable calculus topics. Manifold. Differentiable manifold; Smooth manifold; Banach manifold; Fréchet manifold; Tensor analysis. Tangent vector

  8. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In vector calculus and differential geometry the generalized Stokes theorem (sometimes with apostrophe as Stokes' theorem or Stokes's theorem), also called the Stokes–Cartan theorem, [1] is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus.

  9. Graduate Texts in Mathematics - Wikipedia

    en.wikipedia.org/wiki/Graduate_Texts_in_Mathematics

    Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag.The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages).