Search results
Results from the WOW.Com Content Network
Differential geometry finds applications throughout mathematics and the natural sciences. Most prominently the language of differential geometry was used by Albert Einstein in his theory of general relativity, and subsequently by physicists in the development of quantum field theory and the standard model of particle physics.
Toggle Differential geometry of curves and surfaces subsection. ... Download QR code; Print/export Download as PDF; Printable version; In other projects
This is a list of formulas encountered in Riemannian geometry. Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Slice theorem (differential geometry) T.
A basic result of differential geometry states that normal coordinates at a point always exist on a manifold with a symmetric affine connection. In such coordinates the covariant derivative reduces to a partial derivative (at p only), and the geodesics through p are locally linear functions of t (the affine parameter).
In differential geometry, a branch of mathematics, a Riemannian submersion is a submersion from one Riemannian manifold to another that respects the metrics, meaning that it is an orthogonal projection on tangent spaces.
A differential k-form can be integrated over an oriented manifold of dimension k. A differential 1-form can be thought of as measuring an infinitesimal oriented length, or 1-dimensional oriented density. A differential 2-form can be thought of as measuring an infinitesimal oriented area, or 2-dimensional oriented density. And so on.
A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.