enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  4. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    (also written as 0. 9, 0.., or 0.(9)) is a repeating decimal that is an alternate way of writing the number 1. Following the standard rules for representing numbers in decimal notation, its value is the smallest number greater than or equal to every number in the sequence 0.9, 0.99, 0.999, .... It can be proved that this number is 1; that is,

  5. Numeral system - Wikipedia

    en.wikipedia.org/wiki/Numeral_system

    An irrational number stays aperiodic (with an infinite number of non-repeating digits) in all integral bases. Thus, for example in base 2, π = 3.1415926... 10 can be written as the aperiodic 11.001001000011111... 2. Putting overscores, n, or dots, ṅ, above the common digits is a convention used to represent repeating rational expansions. Thus:

  6. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.

  7. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    In this context, the usual decimals, with a finite number of non-zero digits after the decimal separator, are sometimes called terminating decimals. A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144 ). [ 4 ]

  8. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Decimal: The standard Hindu–Arabic numeral system using base ten. Binary: The base-two numeral system used by computers, with digits 0 and 1. Ternary: The base-three numeral system with 0, 1, and 2 as digits. Quaternary: The base-four numeral system with 0, 1, 2, and 3 as digits.

  9. Transposable integer - Wikipedia

    en.wikipedia.org/wiki/Transposable_integer

    For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...