enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function can be constructed as the double pointwise limit of a sequence of continuous functions, as follows: , = ((⁡ (!))) for integer j and k. This shows that the Dirichlet function is a Baire class 2 function.

  3. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...

  4. Selberg class - Wikipedia

    en.wikipedia.org/wiki/Selberg_class

    All known examples are automorphic L-functions, and the reciprocals of F p (s) are polynomials in p −s of bounded degree. [4] The best results on the structure of the Selberg class are due to Kaczorowski and Perelli, who show that the Dirichlet L-functions (including the Riemann zeta-function) are the only examples with degree less than 2. [5]

  5. Nowhere continuous function - Wikipedia

    en.wikipedia.org/wiki/Nowhere_continuous_function

    One example of such a function is the indicator function of the rational numbers, also known as the Dirichlet function. This function is denoted as 1 Q {\displaystyle \mathbf {1} _{\mathbb {Q} }} and has domain and codomain both equal to the real numbers .

  6. Dirichlet series - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_series

    The most famous example of a Dirichlet series is = =,whose analytic continuation to (apart from a simple pole at =) is the Riemann zeta function.. Provided that f is real-valued at all natural numbers n, the respective real and imaginary parts of the Dirichlet series F have known formulas where we write +:

  7. Dirichlet hyperbola method - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_hyperbola_method

    The method also has theoretical applications: for example, Peter Gustav Lejeune Dirichlet introduced the technique in 1849 to obtain the estimate [1] [2] = ⁡ + + (), where γ is the Euler–Mascheroni constant.

  8. Dirichlet beta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_beta_function

    For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...

  9. Dirichlet eta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_eta_function

    Color representation of the Dirichlet eta function. It is generated as a Matplotlib plot using a version of the Domain coloring method. [1]In mathematics, in the area of analytic number theory, the Dirichlet eta function is defined by the following Dirichlet series, which converges for any complex number having real part > 0: = = = + +.