enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monosaccharide - Wikipedia

    en.wikipedia.org/wiki/Monosaccharide

    The table sugar used in everyday vernacular is itself a disaccharide sucrose comprising one molecule of each of the two monosaccharides D-glucose and D-fructose. [ 2 ] Each carbon atom that supports a hydroxyl group is chiral , except those at the end of the chain.

  3. L-Glucose - Wikipedia

    en.wikipedia.org/wiki/L-Glucose

    l-Glucose is an organic compound with formula C 6 H 12 O 6 or O=CH[CH(OH)] 5 H, specifically one of the aldohexose monosaccharides. As the l-isomer of glucose, it is the enantiomer of the more common d-glucose. l-Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory.

  4. Monosaccharide nomenclature - Wikipedia

    en.wikipedia.org/wiki/Monosaccharide_nomenclature

    These prefixes are attached to the systematic name of the molecular graph. So for example, D-glucose is D-gluco-hexose, D-ribose is D-ribo-pentose, and D-psicose is D-ribo-hexulose. Note that, in this nomenclature, mirror-image isomers differ only in the ' D '/' L ' prefix, even though all their hydroxyls are reversed.

  5. Glucose - Wikipedia

    en.wikipedia.org/wiki/Glucose

    Glucose circulates in the blood of animals as blood sugar. [6] [8] The naturally occurring form is d-glucose, while its stereoisomer l-glucose is produced synthetically in comparatively small amounts and is less biologically active. [8] Glucose is a monosaccharide containing six carbon atoms and an aldehyde group, and is therefore an aldohexose ...

  6. Oligosaccharide nomenclature - Wikipedia

    en.wikipedia.org/wiki/Oligosaccharide_nomenclature

    An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]

  7. Nuclear magnetic resonance spectroscopy of carbohydrates

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Carbohydrate NMR spectroscopy is the application of nuclear magnetic resonance (NMR) spectroscopy to structural and conformational analysis of carbohydrates.This method allows the scientists to elucidate structure of monosaccharides, oligosaccharides, polysaccharides, glycoconjugates and other carbohydrate derivatives from synthetic and natural sources.

  8. AOL latest headlines, entertainment, sports, articles for business, health and world news.

  9. Carbohydrate conformation - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_conformation

    The chair conformation of six-membered rings have a dihedral angle of 60° between adjacent substituents thus usually making it the most stable conformer. Since there are two possible chair conformation steric and stereoelectronic effects such as the anomeric effect, 1,3-diaxial interactions, dipoles and intramolecular hydrogen bonding must be taken into consideration when looking at relative ...