Search results
Results from the WOW.Com Content Network
Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning. [3]
Maxwell's demon can (hypothetically) reduce the thermodynamic entropy of a system by using information about the states of individual molecules; but, as Landauer (from 1961) and co-workers [20] have shown, to function the demon himself must increase thermodynamic entropy in the process, by at least the amount of Shannon information he proposes ...
It's easy to check that the logistic loss and binary cross-entropy loss (Log loss) are in fact the same (up to a multiplicative constant ()). The cross-entropy loss is closely related to the Kullback–Leibler divergence between the empirical distribution and the predicted distribution.
Landauer's principle is a physical principle pertaining to a lower theoretical limit of energy consumption of computation.It holds that an irreversible change in information stored in a computer, such as merging two computational paths, dissipates a minimum amount of heat to its surroundings. [1]
The Hartley function only depends on the number of elements in a set, and hence can be viewed as a function on natural numbers. Rényi showed that the Hartley function in base 2 is the only function mapping natural numbers to real numbers that satisfies
Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.
More precisely, the source coding theorem states that for any source distribution, the expected code length satisfies [(())] [ (())], where is the number of symbols in a code word, is the coding function, is the number of symbols used to make output codes and is the probability of the source symbol. An entropy coding attempts to ...
Equivalently, the min-entropy () is the largest real number b such that all events occur with probability at most . The name min-entropy stems from the fact that it is the smallest entropy measure in the family of Rényi entropies. In this sense, it is the strongest way to measure the information content of a discrete random variable.