Search results
Results from the WOW.Com Content Network
It is also called n-octanol-water partition ratio. [2] [3] [4] K ow serves as a measure of the relationship between lipophilicity (fat solubility) and hydrophilicity (water solubility) of a substance. The value is greater than one if a substance is more soluble in fat-like solvents such as n-octanol, and less than one if it is more soluble in ...
The partition coefficient between n-Octanol and water is known as the n-octanol-water partition coefficient, or K ow. [62] It is also frequently referred to by the symbol P, especially in the English literature. It is also known as n-octanol-water partition ratio. [63] [64] [65]
Bioconcentration factors can also be related to the octanol-water partition coefficient, K ow. The octanol-water partition coefficient (K ow) is correlated with the potential for a chemical to bioaccumulate in organisms; the BCF can be predicted from log K ow, via computer programs based on structure activity relationship (SAR) [7] or through ...
Coefficients for partition between water and solvents wet/dry solvent c e s a b v source w 1-butanol: 0.376 0.434 -0.718 -0.097 -2.350 2.682 [1]w
The distribution of a compound between water and octanol is used to calculate the partition coefficient, P, of that molecule (often expressed as its logarithm to the base 10, log P). Water/octanol partitioning is a relatively good approximation of the partitioning between the cytosol and lipid membranes of living systems. [5]
This quantitative descriptor for microenvironment was derived from the octanol-water partition coefficient, (known as Rekker's Fragmental Constants) widely used for pharmacophores. This scale well correlate with the existing methods, based on partitioning and free energy computations.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Where K d is called the distribution coefficient or the partition coefficient. Concentration of X in solvent A/concentration of X in solvent B=Kď If C 1 denotes the concentration of solute X in solvent A & C 2 denotes the concentration of solute X in solvent B; Nernst's distribution law can be expressed as C 1 /C 2 = K d. This law is only ...