Ads
related to: fume hood sash system
Search results
Results from the WOW.Com Content Network
To reduce lab ventilation energy costs, variable air volume (VAV) systems are employed, which reduce the volume of the air exhausted as the fume hood sash is closed. This product is often enhanced by an automatic sash closing device, which will close the fume hood sash when the user leaves the fume hood face.
Examples of local exhaust systems include fume hoods, vented balance enclosures, and biosafety cabinets. Exhaust hoods lacking an enclosure are less preferable, and laminar flow hoods are not recommended because they direct air outwards towards the worker. [4]: 18–28
Fume hoods were introduced about 100 years ago to safeguard personnel working with hazardous materials. While many changes and improvements have been made, the basic concept and design of fume hoods remains the same. Air is drawn from the workplace, around the worker and into the front of the hood, and is then exhausted out of the laboratory.
Fume hood Glove box A biosafety cabinet ( BSC )—also called a biological safety cabinet or microbiological safety cabinet —is an enclosed, ventilated laboratory workspace for safely working with materials contaminated with (or potentially contaminated with) pathogens requiring a defined biosafety level .
A fume hood is an example of an engineering control that uses local exhaust ventilation combined with an enclosure to isolate a worker from airborne gasses or particulates. Ventilation systems are distinguished as being either local or general.
Industrial exhaust ducts are pipe systems that connect hoods to industrial chimneys through other components of exhaust systems like fans, collectors, etc. Ducts are low-pressure pneumatic conveyors to convey dust, particles, shavings, fumes, or chemical hazardous components from air in the vicinity to a shop floor or any other specific locations like tanks, sanding machines, or laboratory hoods.
Ads
related to: fume hood sash system