enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .

  3. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Furthermore, you only need to do O(n) extra work if an extra point is added to the data set, while for the other methods, you have to redo the whole computation. Another method is preferred when the aim is not to compute the coefficients of p ( x ), but only a single value p ( a ) at a point x = a not in the original data set.

  4. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  5. Reed–Solomon error correction - Wikipedia

    en.wikipedia.org/wiki/Reed–Solomon_error...

    A decoding procedure could use a method like Lagrange interpolation on various subsets of n codeword values taken k at a time to repeatedly produce potential polynomials, until a sufficient number of matching polynomials are produced to reasonably eliminate any errors in the received codeword.

  6. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  7. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.

  8. 'I prefer across the board': Trump's top tariff man favors ...

    www.aol.com/finance/prefer-across-board-trumps...

    "But if it does, we have our plan." She declined to elaborate on the plan for the tariffs, noting it would be announced "in due course." Trump and his aides have been more absolute.

  9. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than n such that the polynomial and its first few derivatives have the same values at m (fewer than n) given points as the given function ...