Search results
Results from the WOW.Com Content Network
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
Melting point: 1800 K (1500 ... Fermium is a synthetic chemical element; it has symbol Fm and atomic number 100. It is an actinide and the heaviest element that can ...
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
the heat at which water boils vehemently (the temperature at which water begins to boil is given as an additional value in the description, as 33) 40: melting point of an alloy of one part lead, four parts tin and five parts bismuth 48: 3: melting point of an alloy of equal parts of bismuth and tin 57: 3 + 1 ⁄ 4: melting point of an alloy of ...
The melting point of a substance is the point where it changes state from solid to liquid while the boiling point of a substance (in liquid state) is the point where the vapour pressure of the liquid equals the environmental pressure surrounding the liquid [102] [103] and all the liquid changes state to gas.
118 chemical elements have been identified and named officially by IUPAC.A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z).
The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.
In 1992, the IUPAC Trans-fermium Working Group named the nuclear physics teams at Dubna and Berkeley as the co-discoverers of element 103. When IUPAC made the final decision of the naming of the elements beyond 100 in 1997, it decided to keep the name "lawrencium" and symbol "Lr" for element 103 as it had been in use for a long time by that point.