Search results
Results from the WOW.Com Content Network
A module is called flat if taking the tensor product of it with any exact sequence of R-modules preserves exactness. Torsionless A module is called torsionless if it embeds into its algebraic dual. Simple A simple module S is a module that is not {0} and whose only submodules are {0} and S. Simple modules are sometimes called irreducible. [5 ...
The minimal degree of a faithful complex representation is 47 × 59 × 71 = 196,883, hence is the product of the three largest prime divisors of the order of M. The smallest faithful linear representation over any field has dimension 196,882 over the field with two elements, only one less than the dimension of the smallest faithful complex representation.
The prefix 0o also follows the model set by the prefix 0x used for hexadecimal literals in the C language; it is supported by Haskell, [19] OCaml, [20] Python as of version 3.0, [21] Raku, [22] Ruby, [23] Tcl as of version 9, [24] PHP as of version 8.1, [25] Rust [26] and ECMAScript as of ECMAScript 6 [27] (the prefix 0 originally stood for ...
More generally, the PBW theorem as formulated above extends to cases such as where (1) L is a flat K-module, (2) L is torsion-free as an abelian group, (3) L is a direct sum of cyclic modules (or all its localizations at prime ideals of K have this property), or (4) K is a Dedekind domain. See, for example, the 1969 paper by Higgins for these ...
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that
Prouhet used the Thue–Morse sequence to construct a solution with = for any .Namely, partition the numbers from 0 to + into a) the numbers each with an even number of ones in its binary expansion and b) the numbers each with an odd number of ones in its binary expansion; then the two sets of the partition give a solution to the problem. [3]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The pattern shown by 8 and 16 holds [6] for higher powers 2 k, k > 2: {,}, is the 2-torsion subgroup, so (/) cannot be cyclic, and the powers of 3 are a cyclic subgroup of order 2 k − 2, so: ( Z / 2 k Z ) × ≅ C 2 × C 2 k − 2 . {\displaystyle (\mathbb {Z} /2^{k}\mathbb {Z} )^{\times }\cong \mathrm {C} _{2}\times \mathrm {C} _{2^{k-2}}.}