Search results
Results from the WOW.Com Content Network
The cycle is concerned with the formation of an ionic compound from the reaction of a metal (often a Group I or Group II element) with a halogen or other non-metallic element such as oxygen. Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured ...
The concepts of Hess's law can be expanded to include changes in entropy and in Gibbs free energy, since these are also state functions. The Bordwell thermodynamic cycle is an example of such an extension that takes advantage of easily measured equilibria and redox potentials to determine experimentally inaccessible Gibbs free energy values.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
The Born–Mayer equation is an equation that is used to calculate the lattice energy of a crystalline ionic compound. It is a refinement of the Born–Landé equation by using an improved repulsion term.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
In these cases the polarization energy E pol associated with ions on polar lattice sites may be included in the Born–Haber cycle. As an example, one may consider the case of iron-pyrite FeS 2 . It has been shown that neglect of polarization led to a 15% difference between theory and experiment in the case of FeS 2 , whereas including it ...
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound. In 1918 [ 1 ] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
During the reduction half-cycle of the stochiometric cycle, the metal oxide is reduced and forms a new metal oxide with different oxidation states (Fe 3 O 4 → 3FeO + 1/2 O 2); a non-stochiometric cycle's reduction of the metal oxide will produce vacancies, often oxygen vacancies, but the crystal structure remains stable and only a portion of ...