Search results
Results from the WOW.Com Content Network
Tris(trimethylsilyl)phosphine is prepared by treating trimethylsilyl chloride, white phosphorus, and sodium-potassium alloy: [2] 1/4 P 4 + 3 Me 3 SiCl + 3 K → P(SiMe 3) 3 + 3 KCl. Several other methods exist. [1] Copper phosphide cluster Cu 96 P 30 {P(SiMe 3) 2} 6 (PEt 3) 18 with C and H atoms omitted for clarity (red=Cu, purple=P, tan=Si ...
Diethyl phosphite hydrolyzes to give phosphorous acid. Hydrogen chloride accelerates this conversion.: [2] Diethyl phosphite undergoes transesterification upon treating with an alcohol. For alcohols of high boiling points, the conversion can be driven by removal of ethanol: [8] (C 2 H 5 O) 2 P(O)H + 2 ROH → (RO) 2 P(O)H + 2 C 2 H 5 OH
The yearly production in the United States varies between 100 and 1,000 short tons (91,000 and 907,000 kg). [citation needed] About 190 liters of dimethyl methylphosphonate, together with other chemicals, were released during the crash of El Al Flight 1862 at Bijlmer in Amsterdam in 1992. [5] [6]
Trimethyl phosphite is an organophosphorus compound with the formula P(OCH 3) 3, often abbreviated P(OMe) 3.It is a colorless liquid with a highly pungent odor. It is the simplest phosphite ester and finds used as a ligand in organometallic chemistry and as a reagent in organic synthesis.
Phosphonic acids, typically handled as salts, are generally nonvolatile solids that are poorly soluble in organic solvents, but soluble in water and common alcohols. Many commercially important compounds are phosphonates, including glyphosate (the active molecule of the herbicide Roundup ), and ethephon , a widely used plant growth regulator.
Dimethylphosphite is an organophosphorus compound with the formula (CH 3 O) 2 P(O)H, known as dimethyl hydrogen phosphite (DMHP). Dimethylphosphite, is a minor tautomer of the phosphorus(V) derivative. It is a reagent for generating other organophosphorus compounds, exploiting the high reactivity of the P-H bond. The molecule is tetrahedral. It ...
Compounds with trimethylsilyl groups are not normally found in nature. Chemists sometimes use a trimethylsilylating reagent to derivatize rather non-volatile compounds such as certain alcohols, phenols, or carboxylic acids by substituting a trimethylsilyl group for a hydrogen in the hydroxyl groups on the compounds.
Trimethylphosphine is a highly basic ligand that forms complexes with most metals. As a ligand, trimethylphosphine's Tolman cone angle is 118°. [7] This angle is an indication of the amount of steric protection that this ligand provides to the metal that to which it is bound.