Search results
Results from the WOW.Com Content Network
Conditional expectation. In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can ...
In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability of those ...
Law of total expectation. The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations[2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value is defined, and is any random variable on the same ...
St. Petersburg paradox. The St. Petersburg paradox or St. Petersburg lottery[1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion ...
Formally, a multivariate random variable is a column vector (or its transpose, which is a row vector) whose components are random variables on the probability space , where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).
A loss of $0.05 is perceived as having a greater utility loss than the utility increase of a comparable gain. In cognitive science and behavioral economics, loss aversion refers to a cognitive bias in which the same situation is perceived as worse if it is framed as a loss, rather than a gain. [1][2] It should not be confused with risk aversion ...
Informant (statistics) In statistics, the score (or informant[1]) is the gradient of the log-likelihood function with respect to the parameter vector. Evaluated at a particular point of the parameter vector, the score indicates the steepness of the log-likelihood function and thereby the sensitivity to infinitesimal changes to the parameter values.
The problem concerns two envelopes, each containing an unknown amount of money. The two envelopes problem, also known as the exchange paradox, is a paradox in probability theory. It is of special interest in decision theory and for the Bayesian interpretation of probability theory. It is a variant of an older problem known as the necktie paradox.