Search results
Results from the WOW.Com Content Network
A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...
v. t. e. In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability ...
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
The binomial test is useful to test hypotheses about the probability ( ) of success: where is a user-defined value between 0 and 1. If in a sample of size there are successes, while we expect , the formula of the binomial distribution gives the probability of finding this value: {\displaystyle \Pr (X=k)= {\binom {n} {k}}p^ {k} (1-p)^ {n-k}}
The characteristic function is a way to describe a random variable. The characteristic function, a function of t, determines the behavior and properties of the probability distribution of the random variable X. It is equivalent to a probability density function or cumulative distribution function in the sense that knowing one of the functions ...
Conditional expectation. In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can ...
The sum of independent geometric random variables with parameter is a negative binomial random variable with parameters and . [14] The geometric distribution is a special case of the negative binomial distribution, with r = 1 {\displaystyle r=1} .
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [2] but instead is a mathematical function in which.