Search results
Results from the WOW.Com Content Network
t. e. In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point.
Binomial series. In mathematics, the binomial series is a generalization of the polynomial that comes from a binomial formula expression like for a nonnegative integer . Specifically, the binomial series is the MacLaurin series for the function , where and . Explicitly,
v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.
The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } as a sum of arctangents of smaller values, eventually resulting in a variety of ...
In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus. For example, many asymptotic expansions are derived from the ...
For any real x, Newton's method can be used to compute erfi −1 x, and for −1 ≤ x ≤ 1, the following Maclaurin series converges: = = + +, where c k is defined as above. Asymptotic expansion
Power series. In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the n th term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions.
Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.