Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series. This value is the limit as n tends to infinity of the finite sums of the n first terms of the series if the limit exists. [9] [10] [11] These finite sums are called the partial sums of the
It is a divergent series: as more terms of the series are included in partial sums of the series, the values of these partial sums grow arbitrarily large, beyond any finite limit. Because it is a divergent series, it should be interpreted as a formal sum, an abstract mathematical expression combining the unit fractions, rather than as something ...
The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The sum of the reciprocals of all the Fermat numbers (numbers of the form + ) (sequence A051158 in the OEIS) is irrational. The sum of the reciprocals of the pronic numbers (products of two consecutive integers) (excluding 0) is 1 (see Telescoping series).
Because the sequence of partial sums fails to converge to a finite limit, the series does not have a sum. Although the series seems at first sight not to have any meaningful value at all, it can be manipulated to yield a number of different mathematical results.