Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
It is a divergent series: as more terms of the series are included in partial sums of the series, the values of these partial sums grow arbitrarily large, beyond any finite limit. Because it is a divergent series, it should be interpreted as a formal sum, an abstract mathematical expression combining the unit fractions, rather than as something ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The sum of the reciprocals of all the Fermat numbers (numbers of the form + ) (sequence A051158 in the OEIS) is irrational. The sum of the reciprocals of the pronic numbers (products of two consecutive integers) (excluding 0) is 1 (see Telescoping series).
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
The infinite sequence of additions expressed by a series cannot be explicitly performed in sequence in a finite amount of time. However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series.
The geometric series on the real line. In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
Te n is the sum of all products p × q where (p, q) are ordered pairs and p + q = n + 1 Te n is the number of ( n + 2)-bit numbers that contain two runs of 1's in their binary expansion. The largest tetrahedral number of the form 2 a + 3 b + 1 {\displaystyle 2^{a}+3^{b}+1} for some integers a {\displaystyle a} and b {\displaystyle b} is 8436 .