Search results
Results from the WOW.Com Content Network
This shader works by replacing all light areas of the image with white, and all dark areas with a brightly colored texture. In computer graphics, a shader is a computer program that calculates the appropriate levels of light, darkness, and color during the rendering of a 3D scene—a process known as shading.
The shader assembly language in Direct3D 8 and 9 is the main programming language for vertex and pixel shaders in Shader Model 1.0/1.1, 2.0, and 3.0. It is a direct representation of the intermediate shader bytecode which is passed to the graphics driver for execution.
The ability to write shaders that can be used on any hardware vendor's graphics card that supports the OpenGL Shading Language. Each hardware vendor includes the GLSL compiler in their driver, thus allowing each vendor to create code optimized for their particular graphics card’s architecture.
This article lists common shading algorithms used in computer graphics. Interpolation techniques. These techniques can be combined with any illumination model:
Modern graphics cards use a freely programmable, shader-controlled pipeline, which allows direct access to individual processing steps. To relieve the main processor, additional processing steps have been moved to the pipeline and the GPU. The most important shader units are vertex shaders, geometry shaders, and pixel shaders.
Cg (short for C for Graphics) and High-Level Shader Language (HLSL) are two names given to a high-level shading language developed by Nvidia and Microsoft for programming shaders. Cg/HLSL is based on the C programming language and although they share the same core syntax, some features of C were modified and new data types were added to make Cg ...
The unified shader model uses the same hardware resources for both vertex and fragment processing. In the field of 3D computer graphics, the unified shader model (known in Direct3D 10 as "Shader Model 4.0") refers to a form of shader hardware in a graphical processing unit (GPU) where all of the shader stages in the rendering pipeline (geometry, vertex, pixel, etc.) have the same capabilities.
Compute shaders leveraging GPU parallelism within the context of the graphics pipeline; Shader storage buffer objects, allowing shaders to read and write buffer objects like image load/store from 4.2, but through the language rather than function calls. Image format parameter queries; ETC2/EAC texture compression as a standard feature