Search results
Results from the WOW.Com Content Network
Power series. In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the n th term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions.
Differential equations. In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.
Bioinformatics tools aid in comparing, analyzing and interpreting genetic and genomic data and more generally in the understanding of evolutionary aspects of molecular biology. At a more integrative level, it helps analyze and catalogue the biological pathways and networks that are an important part of systems biology.
Probability generating functions are often employed for their succinct description of the sequence of probabilities Pr(X = i) in the probability mass function for a random variable X, and to make available the well-developed theory of power series with non-negative coefficients.
A formal power series is a special kind of formal series, of the form. where the called coefficients, are numbers or, more generally, elements of some ring, and the are formal powers of the symbol that is called an indeterminate or, commonly, a variable. Hence, power series can be viewed as a generalization of polynomials where the number of ...
e. In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
There exist many types of convergence for a function series, such as uniform convergence, pointwise convergence, and convergence almost everywhere. Each type of convergence corresponds to a different metric for the space of functions that are added together in the series, and thus a different type of limit. The Weierstrass M-test is a useful ...
Generating function. In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating ...