Search results
Results from the WOW.Com Content Network
Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
The contemporary conjugate convective heat transfer model was developed after computers came into wide use in order to substitute the empirical relation of proportionality of heat flux to temperature difference with heat transfer coefficient which was the only tool in theoretical heat convection since the times of Newton. This model, based on a ...
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
Surface heat loss may be reduced by insulation of the body surface. Heat is produced internally by metabolic processes and may be supplied from external sources by active heating of the body surface or the breathing gas. [2] Radiation heat loss is usually trivial due to small temperature differences, conduction and convection are the major ...
Note that for gases in usual conditions, heat transfer by advection (caused by convection or turbulence for instance) is the dominant mechanism compared to conduction. This table shows thermal conductivity in SI units of watts per metre-kelvin (W·m −1 ·K −1 ).
Forced convection is a mechanism, or type of transport, in which fluid motion is generated by an external source (like a pump, fan, suction device, etc.). Alongside natural convection, thermal radiation, and thermal conduction it is one of the methods of heat transfer and allows significant amounts of heat energy to be transported very efficiently.
Simply adding or subtracting the heat transfer coefficients for forced and natural convection will yield inaccurate results for mixed convection. Also, as the influence of buoyancy on the heat transfer sometimes even exceeds the influence of the free stream, mixed convection should not be treated as pure forced convection.