Search results
Results from the WOW.Com Content Network
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
The proteins may assist in the movement of substances by facilitated diffusion, active transport, osmosis, or reverse diffusion. The two main types of proteins involved in such transport are broadly categorized as either channels or carriers (a.k.a. transporters, or permeases).
Facilitated diffusion may occur through three mechanisms: uniport, symport, or antiport. The difference between each mechanism depends on the direction of transport, in which uniport is the only transport not coupled to the transport of another solute. [4] Uniporter carrier proteins work by binding to one molecule or substrate at a time ...
The two DNA strands are known as polynucleotides as they are composed of simpler monomeric units called nucleotides. [2] [3] Each nucleotide is composed of one of four nitrogen-containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar called deoxyribose, and a phosphate group.
So, if the potential difference is maintained, the equilibrium state ΔG = 0 will not correspond to an equimolar concentration of ions on both sides of the membrane. If a process with a negative ΔG is coupled to the transport process then the global ΔG will be modified. This situation is common in active transport and is described thus:
This process is referred to as active transport. For instance, inhibiting vesicular H +-ATPases would result in a rise in the pH within vesicles and a drop in the pH of the cytoplasm. All of the ATPases share a common basic structure. Each rotary ATPase is composed of two major components: F 0 /A 0 /V 0 and F 1 /A 1 /V 1. They are connected by ...